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Abstract

This paper concerns the reliability issues as well as queueing analysis of M/ G/1 retrial queues with general retrial times

and server subject to breakdowns and repairs. We assume that the server is unreliable and customers who find the server busy or down are
queued in the retrial orbit in accordance with a first-come-first-served discipline. Only the customer at the head of the orbit queue is al-
lowed for access to the server. The necessary and sufficient condition for the system to be stable is given. Using a supplementary variable
method, we obtain the Laplace-Stieltjes transform of the reliability function of the server and a steady state solution for both queueing and

reliability measures of interest. Some main reliability indexes, such as the availability, failure frequency, and the reliability function of the

server, are obtained.
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Retrial queueing systems are characterized by the
feature that arrivals who find the server unavailable
are obliged to leave the service area and to try again
for their requests in random order and at random in-
tervals. Between trials a customer is called to be in
“orbit”. This feature plays a special role in several
computer and communications networks. For recent
bibliographies on retrial queues, see the studies by
Yang and Templetonm, Falin'*, Kulkarni and
Liang!, and Falin and Templeton[”. Artalejo[5'6]
also provided extensive surveys of retrial queues.

Many of the retrial queueing systems operate un-
der the classical retrial policy. Nevertheless, there are
other types of queueing situations in which the inter-
vals separating successive repeated attempts are inde-
pendent of the number of the customers in orbit. The
so-called constant retrial policy arises naturally in
problems where the server is required to search for
customers!”’ and in communication protocols of type
carrier sense multiple access (CSMA). This discipline
was introduced by Fayollem, who investigated an
M/M/1 retrial queue in which the repeated cus-
tomers form a queue and only the customer at the
head of the orbit queue can request a service after an
exponentially distributed retrial time. Farahmand'®]
calls this discipline a retrial queue with FCFS orbit.
Since Fayolle[s), there has been a fast development

about retrial queues with constant repeated at-
tempts ° 1. Choi et al. '] generalized the constant
retrial policy by considering an M/ M/1 retrial queue
with general retrial times where only the customer at
the head of the orbit may attempt retrials from orbit.
Later, Gomez-Corral!'’ discussed extensively a retrial
queuing system with FCFS discipline and general re-
trial times. Recently, there have been significant con-
tributions to retrial queues with general service times
and non-exponential retrial time distributions. For
more information, see Refs. [10, 16—18] and refer-

ences therein.

On the other hand, most papers on retrial queues
also assume that the server is available on a permanent
basis. However, in practice, these assumptions are
apparently unrealistic. The server may well be subject
to lengthy and unpredictable breakdowns while serv-
ing a customer. For example, in computer systems,
the machine may be subject to scheduled backups and
unpredictable failures. Because of the limited ability
of repairs and heavy influence of the breakdowns on
the performance measure of the system, it is of basic
importance to study reliability of retrial queues with
server breakdowns and repairs. Wang et al. (197 car-
ried out a detailed analysis of reliability of the classic
M/ G/1 retrial queues with exponentially distributed
retrial times. For more information, interested read-
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ers may refer to Refs. [20—22], where a single-serv-
er retrial queue with unreliable server was considered.

In this paper, we discuss the M/G/1 retrial
queues with general retrial times and server subject to
breakdowns and repairs. The basic model was investi-
gated by Gomez-Corral ™! but without server break-
downs (failure rate g =0, see Remark 2 in Section
3). In this sense, we generalize the corresponding
model by studying the reliability issues as well as
queueing characteristics of the unreliable retrial
queues. The explicit expressions of some main queue-
ing measures along with the main reliability measures
such as availability, failure frequency, and reliability
function of the server are obtained.

1 Model description

We consider a single-server retrial queue in
which primary customers arrive according to a Poisson
process with rate A >0. There is no waiting space in
front of the server where the server is subject to
breakdowns and repairs. If an arriving primary cus-
tomer finds the server idle, the customer begins ser-
vice immediately and leaves the system after service
completion. If the server is found to be busy or under
repair, the arriving primary customer enters a retrial
queue according to a FCFS discipline. For customers
in the retrial queue, we assume that only the cus-
tomer at the head of the retrial queue is allowed to at-
tempt to reach the server. When a service is complet-
ed, the server searches for customers in the retrial or-
bit for next service. The searching time is governed
by an arbitrary law with common probability distribu-
tion function A (x)[A(0) =01, of density function

a(z) and Laplace-Stieltjes transform A (s) and mea-
sured from the instant the server is idle. During the
searching process, if a primary customer arrives at the
system, then the server interrupts the searching pro-
cess and begins to serve the primary customer. Other-
wise, the customer at the head of the retrial queue is
selected to start his service. That is, when the server
becomes idle, a customer from the retrial queue com-
petes with a primary customer to decide who reaches
the server first. The time generated by A (x) is
called the retrial time. The retrial customer is re-
quired to cancel the attempt for service if a primary
customer arrives first. In that case, the retrial cus-
tomer returns to its position in the retrial queue.

The service times are independent, identically
distributed random variables with a common probabil-

ity distribution function B(x)[B(0) =0], density

function & ( 2 ), Laplace-Stieltjes transform B (s),
and first two moments 8; and B,. We assume that
when the server is busy it fails at an exponential rate
u. When the server fails, repair begins immediately
and the customer just being served before server
breakdown waits for the server until repair completion
in order to complete its remaining service. The repair
time is a random variable with probability distribution
function G (), density function g (x ), Laplace-

Stieltjes transform G(s), and with the first two mo-
ments 7; and ¥;.

We assume that the service time for a customer is
cumulative and server is as good as new after repair.
Note that by assumption, the total “service time” is a
time interval measured from when a customer begins
to be served until the service is completed, which
comprises possible breakdowns times. We define this
time interval as the “generalized service time”. The
inter-arrival times of primary calls, retrial times, ser-
vice times, repair times are assumed to be mutually
independent.

The functions e (x), B(x) and ¥ (x) are the
conditional completion rates for repeated attempt, for
service, and for repair at time ¢, which are defined
respectively as

_ _a(x) __b(x)
7(x) = &)
T 1-G(x)

From the description of the model, the state of
the system at time ¢ can be described by the Markov
process { X (z), t=0} = {(C(z), Q(t), &/(1),
&,(1), &(2)); t==01, where at time £, C(t) de-
notes the server state (0, 1, 2 stand for the server i-
dle, busy, under repair, respectively) and Q(¢) de-
notes the number of customers in the retrial orbit.
Three supplementary variables are introduced to ana-
lyze the states of the system. At time ¢, if C(#)=0
and Q(t)>0, we define §3(t) as the elapsed retrial
time; if C(t)=1or C(z) =2, we define §(¢t) as
the elapsed service time; if C () =2, we define
£,(2) as the elapsed repair time. Thus, the stochas-
tic process | X(t), t=0} ={(C(¢), Q(1), &(¢),
&.(2), &,(t)); t==0] is a Markov process. Fig. 1 il-

lustrates the system behavior.
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2 Stability condition

To prove ergodicity, we need the following pre-

liminary results:

Let ¥, be the generalized service time of the nth
customer. Note that it may include some possible
down times of the server due to server failures during
the service period of the nth customer, since the nth
customer begins to be served until the service is com-
pleted. Cao and Cheng[23] have found that y,’s are
independent, identically distributed random variables
with distribution function

D(t)s Priy,<tt .

o

_ ZJIG(”(f _

1=0v0

!
e L) g ),
(1)

ue

Al )fme-*fdmx),
0

P(Qui1 =71 Qy=14)=

0,

We first prove that | Q,, n=>11} is ergodic. To this
end, we shall use the following Foster’ s criterion:
An irreducible and aperiodic Markov chain 1 Q,, n=
0! is ergodic if there exists a nonnegative function
(), j €EN, and e >0 such that the mean drift
U, =E[f(Q,+1) — f(Q,) | Q, = k] satisfies
| ¥, | < oo for all BEN, except perhaps a finite num-
ber of j. We consider the function f(j) = j in our
case. Thus, we obtain that ¥, = A8, (1 + p7y) —
(1-80.)A () for £ =0, where 8;; denotes Kro-
necker’s delta. Clearly, the inequality A8, (1+ pyy)
< A(RQ) is a sufficient condition for the system to be
stable.

i J
JO g'}—TLe"\IdD(I),

< ~ o It
(1 - A et ()
0 7] t/.

- o« J-1rtl
+A(A)I _(A_IL*__ 7AIdD(I),

which is independent of n. Its Laplace-Stieltjes

transform is

5(5)=Jwe_“dD(t)
~0 o~
= B(s + p — uG(s)),
Re(s) > 0,

and its expected value is given by
dﬁ( 5)
Ex" =~ d ~ :B1(1+#71).
s ls=o
Thus, we can provide the following theorem
which gives a necessary and sufficient condition for
the system to be stable.

Theorem 1. The inequality A8 (1 + uy;) <
A (1) is a sufficient and necessary condition for the

system to be stable.

Proof. let Q, be the number of customers in
the retrial queue at the nth departure point, n=>1.
It is not difficult to see that {1 Q,, n==1! is an irre-
ducible and aperiodic Markov chain, with the state
space Z . and the following one-step transition proba-
bilities:

if i =0andj >0

if i >0andj = i -1
. (2)

fi>0and; >i -1

otherwise

The same inequality is also necessary for ergodic-
ity. We prove this by employing a theorem proposed
by Sennot et al.1?*! which states that the Markov
chain {Q,, n==0! is not ergodic if it satisfies Ka-
plan’ s condition, that is, the mean drift ¥, < o
(k>20), and there exists K € N such that ¥, =0 for
F=K.

Let { Q,, n =0} be ergodic and assume that
AB1(1+ py)==A (1). From the above discussion,
¥, 220 (k>20). However, according to (2), the
down drift @, = > (j — i) P(Q,,y = j | Q. = 1)

J<t
is equal to 0 if 7 =0 and equal to
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- A(A)J:e_“dD(I) ifi>0.

This implies that Kaplan’s condition holds by Theo-
rem 3 in Ref. [24], which states that Kaplan’s con-
dition holds if the sequence {9;} is bounded below.
Thus, {Q,, n=>0} is not ergodic which is contradic-
tory. Hence, the necessity of the ergodicity is

proven.

Since primary customers arrive in according to a
Poisson process, it is well known that the steady state
probabilities of 1{C(z), Q(¢));r220} exist and are
positive if and only if {Q,, 72201 is ergodic. There-
fore, it suffices to show that A8, (1 + 7)< A(R)is
a sufficient and necessary condition for the system to

be stable. Q.E.D.

Remark 1. To explain the one-step transition
probabilities in (2), we consider the following cases:

(i) When / =0, there is no customer in the re-
trial orbit at the moment that the nth customer leaves
the system. If there are j customers in the orbit
when the (7 + 1) th customer leaves the system, we
know that these customers arrive at the system during
the generalized service time of the (n + 1)th cus-
tomer. Then, we get the first expression in (2) due
to the Poisson arrival process.

(ii) When / >0 and j =i —

tomers in the orbit when the nth customer leaves the

1, there are i cus-

system, and the next customer who enters the service
is from retrial orbit { with probability A (A)). Fur-
thermore, there is no external arrival during the ser-

vice (with probability J. e **dD(x)) . Combining
0

these factors, we have the second expression in (2).

(iii)) When i >0 and j >i — 1, there are i cus-
tomers in the orbit when the nth customer leaves the
system, and the next customer who enters the service
can be: (a) primary customer with probability 1 —
A(R), and during this service there are j — i cus-
tomers arriving at the system; (b) retrial customer
with probability A (1) and during this service there
are j — 1 + 1 customers arriving at the system. By to-
tal probability law, we obtain the third expression.

(iv) Other events are impossible, so the corre-
sponding one-step transition probabilities are zero.

3 The steady state equations and solutions

In this section, we shall study the system in the
steady state which exists if and only if the stability
condition is met.

For the process { X (¢), : 220}, we define the
state probability pg(t )=P(C(t)=0, Q(z)=0)
and the state probability densities py,; (¢, v)dv=
P(C(t)=0,Q(t)=i,v<&(t)<v+dv), for
izl p, {t,x)dor= P(C(t)=1,Q(t)=i,r<
§(1)<x +dx), for i =05 py,(t, 2, y)drdy=
P(C(1)=2,Q(t) =i, <& (t)< z + dr,
y<&(t)Y<y+dy), for i=20.

In a general way we obtain the equations of sta-
tistical equilibrium

a0 (1) * Ap(0) = [ pralt, )82 )de, (3)
0
5 . o _
[§+£+/\+a(v)]p0‘](1,v)=0, =1, (4)
[a% +a% Aot B(I)]pl,j(t,x) = (1~ 80)hpy, (2, 1) +f0 Y(3) by, (£, 2, 9)dy,j =0, (5)

5

Y

oot AS Y(y)}PZ‘J(I,I,y) = 2py;a(t,x,y), j=0.

The above equations are to be solved under the boundary conditions

Pl‘](I,O) = A5OJP00(I) +(1 - SOJ)JO PO,_,(Zs v)dv +J0 Po_jﬂ(z, v)a(v)dv,

(6)

po‘](t,()) = Jmpw(t,:r)ﬂ(r)dr, (7)
0

(8)

P2, (t,2,0) = pp, (t,2), (9)

and the normalization equation

o0

Pool2) + Ef:pod(t, v)dv + 2{:[:p1‘1(1,1)d1 + J:J:pz_j(t,r,y)dxdy}: 1,

=1
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where 8y, is the Kronecker function, p;, -;(t,x) = limpy,,(¢,z) for j =20 and x=>0; and p,, ,(z,y)=

0, p2,-1(2, x,y)=0for 0z, 2, y<oo. limp,, (¢, z, y) for £=0, y=0, j=0.

We assume that the condition AB; (1 + 7,) <
A(Q) is fulfilled and set poo = lim poo (), po.;j(v)

=lim py,, (¢, v) for j=21 and v=20; py,,(x) =

Theorem 2. In the steady state, the joint distri-
bution of the server state and the length of the retrial
queue has partial generating function:

A8,(1
poo = 1“%3&”—1), (10)
Az[A(A) = A8 (1 + py) 11 = B(P(A = Az))] X expl— Avi(1 — A(v)) (11)

Polz,w) = "R OT0 - AIBLOG — 22)] - 21 - B(O(A — 20
Pie,r) = A0 2IAQ) 4810+ uy)] X expl = B~ Ae)z | (1~ B(x)) .
Rl = (1-2)AQ)BI®(A - 22)] — z[1 - B(®(X - 12))] ’

Polenz. ) = _Ap(1 = 2)[AQ) = 281 + pr))]
2BV T (1~ 2)AA)BI[®(X — Az)] — z[1 — B(®P(A — Az))]
X expl— ®(A — Az)x — A(1 - 2)yl (1 — B(z))(1 - G(y)), (13)

where ®(z)=z+p - uG(z), and

Po(z,v) = 25 pq,(v)2,
P(z,z) = ZPL;(I)Z’,

Py(z,x,y) = zpzd(z,y)zj.
1=0

Proof. Under the stability condition, we derive
from Egs. (3)—(9) that

APoo = jO p1,0(x)B(x)dxr, (14)
[d%‘“‘*“(v)]ﬁo,j(v) =0, (15)
[i TASpt B<r>]p,,,<:c)

= Apy,q(x) +j0 () p,,(z, ), (16)

[E% + A+ )’(y)]ﬁz,](z,y) = Apy, 1z, ),
(17)

po(0) = J:pm(a:)ﬂ(x)dz, (18)

p1,(0) = A8g,po + (1 = aoj)jo po,,(v)dv

©

+JO po,,+i1{v)a(v)do, (19)
p2,,(x,0) = ppy (), (20)

and the normalization condition

Poo * ;JO po,,(v)dv + ;}UO py,(x)dx

+f:f0 pa, (2, y)dzdy | = 1. (21)

Multiplying both sides of Eqs. (15)—(20) by 2’ and
summing over j, we obtain the following equations

after some algebraic manipulations:

l:a%+,l+a(v)]P0(z,v) =0, (22)

[58; +A+p+ ﬂ(x):lPl(z,I)

= AzP(z,x) + JO Py(z,x,y)7(y)dy,
(23)

[a% + A+ )’(y)]PZ(Z,I,y) = AzP,(z,1,y),
(24)
Po(2,0) = — Apyy + fo P (z,2)p(z)dx,
(25)

Py(2,0) =a[po + | Potz, )dv]

+ipro<z,v>a(v>dv, (26)
2Jo
P,(z,z,0) = pP(z,x). (27)

In addition, Eq. (21) can be rewritten as

Poo T lim [J. Py(z,v)dv +J P,(z,z)dx
=—=1- LJo 0

+j j Pz(z,x,y)dxdy} =1.
00

Considering Eq. (27), we obtain the solutions to
Egs. (22), (24) that
Po(z,v) = Po(z,0)e (1 -~ A(v)), (28)
Py(z,xz,y) = Pl(z,x)pe_“llﬂy(l - G(y)).
(29)
Substituting Eq. (28) into (26), we get

Pi(2,0) = apg + LPo(z, 0)[A(1)

+(1-AQ)e=]. (30)
Substituting Eq. (29) into (22), we have
Pi(z,z) = P(z,0)e”®*==)x(1 - B(x)),
(31)
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which is substituted into (25) to give
PO(Z,O) = - /‘poo + B(®(A(1 - z)))Pl(:90)

Thus, from (30) and (32), we get

(32)
_ Az (1 - B(@GU - 2))))
Pol=0) = T B0 - 2))) — 2(1 — B(B(A(1 = 2)))) P® (33)
_ ] M - 2)
Pi(z0) = 00 - 2)B(@G( - 2))) - =(1 ~ BB~ 20N P (39

which implies that Po(z, v), Pi(z,x), Py(z, r,
y) depend only upon pgy. Finally, pgo can be found
by using the normalization condition

Poo +J Po(1,v)dv +J P, (1, z)dx
0 0

+j J P,(1,x,y)dxrdy = 1,
070

which completes the proof. Q.E.D.
Corollary 1. If A5, (1 + y71)<A(A), then

(i) the probability that the system is empty:

oo = 1 ABi(1 + pyy)
o0 =1- T ;

(ii) the probability that the server is idle and the
system is not empty:

(- AR+ pry)

Pidle - A ( A) ;
(iii) the probability that the server is busy:
Pbusy = Aﬁl;

(iv) the probability that the server is under re-
pair:
Prepair = Aﬂl#yl

Corollary 2. In the steady state, denote by N
and N the number of the customers in the retrial
queue and in the system, respectively. Then N, and

A(X) ’ N have probability generating functions
B (AQA) = 8L+ py )~ =)
=) = A= DB(@G - ) - =(1 - BOG = )’ (35)
p(2) = = (Ax = A8 (1 + py))(1 = »)B(O(AU - 2)))) (36)
~ A1 = 2)B(@(A(1 - 2))) — 2(1 ~ B(®(A(1 — 2))))’

In particular, the corresponding expected values are
given by

_ Ayl +20(1 = AQ))BE + p°B
e 2(A(1) - p) g ’
(37)

L

_ AuraBi+ 20(1 - p) By + B,
20A(2) - o)
where p=AB(1+ p7).

L , (38)

Proof. This is readily obtained by considering
the following equations:

p =) =P00+'[ Pg(z,v)dv-%J Pi(z, x)dx
0 0
+J‘ J Py(z,x,y)dxdy,
0J0
p(z) =Py +J Py(z,v)dv + Z[:J P(z,x)dx
0 0

+J J Pz(z,.r,y)drdy:\,
00

and the mean queue length can be readily derived

from (35) and (36). Q.E.D.

Remark 2. When p =0, our model becomes the
corresponding M/G/1 retrial queue reliable server.
In this case, (10)—(12) reduce to
Pg =1- IR

AQx)
Py(z,v)
B Az[A(X) = 28001 — A(4 - a2)]
TAMDI( - 2)A)BA - Az) - 2[1 - B(A - A
X expi— Avi(l — A(v)),
P(z, 1)

- _ A= )[AM) ~ag]
T (1-2)A)BM —Az) - z[1 - B(A - a2)]
X expi— (A — Az)x (1 - B(x)),
which agree with (13)—(15) in Gomez-Corralt™!,

The following theorem gives the distributions of
the waiting times and the corresponding expected val-
ues in the steady state.

Theorem 3. Dencte by W and W, respective-
ly, the time that an arriving primary customer spends
in the system and in the retrial queue at the steady
state. If the system is stable, then the Laplace-Stielt-
jes transforms of W and W are given by

W(s) =(1 - p)B(o(s)) + 2AQ =)

A—s— An(s)
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2(s)(1 = 2 (s))(B(D(s)) = B(OQA = x(s))))) (39)

AN - 2()BOA(1 - 7(5)) = 7(s)(1 - B(@(A(1 - 7(s)))))’

AAQQ) — p)

Wos) =l = p+ o G GOB(G))

()1 = n(s)(BB(s)) = B(OUAU = x(s))))) (40)

A A - x(sHB(SA(L - x(5))) - w(s)(1 - B(D(ACT - n(s))))))’

The corresponding expected values are given by

A2(8uys = 2)B) +20(A + 6 — o) 8] + p° 0B

EwW = = R 41
zw(A(A)—p)af (41)
/1 o, 2R+ 2 0-A(R)O)E + o2
4 200(A(R) - p)f?
where Ee¥1C=2,Q=j,86=1,6=1y)
7['(5)5 (S+A)A(S+A)B(¢(S)) ) :Ee_iw(1+l).E(e/)W‘ 1C=2,Q=j,6 = 1,6 =y).
s+A—-A(l—A(s+ A))B(P(s)) (46)

(43)

Proof. Note that the system is empty or the
server is idle, busy, or under repair when a primary

customer arrives. Thus, we have
W(s)= peE(e™ 1 C=0,Q =0)

+ Z:fo po, (E ™ 1C=0,Q=j,8& = v)do

+ EU:pM(I)E(e"WJ C=

+J- j par MEEY I C=2,Q=j,8 =z,
0J0

1,Q = j, ¢ = x)dx

& = y)drdy}, (44)

where C, Q, &, &, and &, denote, respectively, the
server state, the number of customers in the retrial
queue, the elapsed retrial time, the elapsed service
time, and the elapsed repair time when the primary

customer arrives.

It can be seen that W coincides with a general-
ized service time if the system is empty or the server
is idle when the primary customer arrives. In this
case, according to (3), E(e ™| C=0,Q=0) =
E(e™¥]|C=0, Q=j,&=0v)=B(d(s)). If j
customers are already in the retrial queue and the
server is busy, or under repair when the primary cus-
tomer arrives, then W is equal to W* + W@ ™1,
where W™ represents the waiting time of the cus-
tomer being served spends in the system from the in-
stant the primary customer arrives, and W% ! rep-
resents the total waiting time the (j + 1) customers in
the retrial queue spend in the system from the mo-
ment the customer being served leaves the system.
Since W™ and WD are independent, we get

Ee™1C=1,Q=j,8 = x)

G+ -
W UEE™ 1Cc=1,Q=j,8 = 1),(45)

= Ee

In order to get E(e”w' IC=1,Q=j, &=ux),

E(e_SW“ IC=2,Q=j,6 =x,&=1y), we employ
the following well-known formulas
Ply< &’ < y+dyi &l >2)

b(xr + y)d
T 1-B(x)’ (47)

Ply< &’ <y+dyl &) > 1)

_ g{xr + y)dy

) and E;*)

repair time, respectively; Ei') and E;r) represent the

* . -
where Ei represent the service time and

remaining service time and remaining repair time at
the instant the primary customer arrives, respective-
ly. Thus, we have

Ee™ 1C=1,Q=j,6 = 1)
IR R S
= "Z:;)I—B(I)jo b(x + u)

e ’(‘l:_u}je*""[é(s)]"du

_ rB__(_)J b( )e P(s)(u- I)d (49)
E(e’V 1C=2,Q=j.6=x2.6=y)
_ 1
“~(1-B(x)(1 - G(y))
J’ j b(I + u)g(y+ _U)en(uﬁ/)
”CZ,S e dudy
B 1
T (1-B(x)(1 - G(y)
_jw.[wb(u)g(v)e—0(:)(u*x)ﬂ(lv-y)dudl’_ (50)
In order to obtain W (s), it still needs to find
(y+1) n
Ee * . Firstly, we calculate Ee " . After a

service completion there exists a competition for ser-
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vice between a primary customer and a customer in
the retrial queue. Therefore,

B = 2B(cp(s))jmre‘%\e*“ddi(y)

[B(@(s))JJ e A M drdA(y) |

- Z}A(s N A)E(cp(s))[s -

(1= AG+ BN ]

_ (s+/1)ALs+A)B(¢isll

T s+ A —a(l - A(s + /\))B((P(s))

= n(s). (51)
Secondly, according to the description of our model,

it can be seen that
+1)

Ee ™ = (x(s))", j =0, (52)
With the help of results in Theorem 2, after substi-
tuting (52),
pressions above, and then arranging these new ex-
pressions into (44), we obtain W (s). Finally, not-
ing that

(49), (50) into the corresponding ex-

W(s) = B(®(A(1 = )W (5),

we can get the expression for Wq( s). This completes
the proof.

4 Reliability indexes of the server

We now consider some reliability quantities of
the server in this section.

Define A (¢) = P {the service station is up at
time ¢ | as the point-wise availability of the server,
and define the steady-state availability of the server as

A=1mA(:).

t— o

Theorem 4. The steady-state availability of the
serveris A=1—p

Proof. This is readily obtained by considering
the following equation

A= po+ lzlgl[Jo Po(z, v)dv + Jo Pl(z,r)dx],

together with (11) and (12). Q.E.D.

Theorem 5. The steady-state failure frequency of
HABy .

the server is W, =

Proof. Since the steady-state failure frequency of
the service station is

o0

Wf = ZJO l!lpl,J(I)dI,

2=0
+ oo
we get W, = Iin}J pP (2, r)dx = pAB .
=1y

Q.E.D.
Denote by t the time to the first failure of the
server. Then the reliability function of the server is

R(t) = P(r >1).

Theorem 6. The Laplace-Stieltjes transform of
R(t) is given by

R*(s) :Sl
N Ff;( )

[I—A(s + )]

Hz(S)

[1—B(5+,€l)] (53)

where

_ /\w(SL&
Hols) = (T T awG)AG + 2
H,(s) = Als + /\@(s)—jg(s + W[ (s + A~ Aw(g)zzzl(s + A)~+ Aw(s)]
ns; = (s+ A -2w(s))AG +A)[(s+A) = (A +5A(s + A))B(s + #)]’
H,(s) = Al + 21 - w(s)]

and w (s) is the minimum absolute value root of the
equation

T =
s +

vB(s+p+ A - Az)l
inside | x| =1, Re{(s)>0.

(54)

Proof. In order to find the reliability of the serv-
er, let the failure states of the server be absorbing

Then we obtain a new system. In the new

states.
system, we use the same notations as in the previous

section. Then we can get the following set of equa-

(s+ A2 = Ado(sN[(s+ 1) - (A +sA(s + A))B(s + 1))

tions:

d%Poo(” + Apgo(2) = J prolt, ) plx)dx,
0

(55)
o 0
lié?+a_y+x+a(v)]p0,j(tyv):0,
;=1 (56)
o
[at+a@+/\+#+‘8(1)]p1](t I)
- (I#SOJ)APLJ_I(t’I)’ j=0.(57)

The boundary conditions are
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some algebraic manipulations:

. pals) = [+ [ B0, 5, 00 ],
?1,,(2,0) :A[%jpo(f) +(1 - 50,)J0 po., (1, v)dv:] (65)
* ags PREY

| oyt 0)alu)dy, (59) —i%fiﬁz_(®+A+MvWMasvﬂ,
0

(66)

po.,(£,0) = f:pld(t,z)ﬁ(x)dr, (58)

with the initial condition: pg(0)=1.
o¢,(2,5,x)

By taking Laplace transforms of these equations, or
we obtain =—(s+A—-Az+ u+ Blx))d(z,s5,2),
* _ * * * (67)
51)00(5)—1 __AP00(5)+JO ﬂ(I)Pl_O(S,I)dI, -
(60) $0(z,s5,0) :jo Blx)$,(z,s,x)dr
Spotj(s’v)*_ai@_lé(_:_’i):—(A+a(v))p0*_](s,v), —JO Bx)$,(0,s, x)dx, (68)
=1, 61) . =
! * ( $.(z,5,0) =A[,D00(S) +J ¢0(z,s,1)d1]
. op, (s, x) 0
SPI'J(S’I)+—,Jar— 1 o)
. 47——J a(v)bo(z,s, v)dv. (69)
=@+ p+BzNpy,(s,x) zJo
F(1- 8, )'\P;_,q(s‘,l), Solving (66), (67), we get
.’>0 (62) $o(2,s,v)
L7 = #o(z,s5,0)expl— (s + D wt(1 - A(w)),
po,,(s,0) :Jo B(z)p, (s, z)dx, (63) (70)
. . $(z,5,x)
Plyj(S,O) :ASO,JPOO(S)‘FA(]“&O;) - ¢1(z,s,0)exp5—(s+,u+)t—)«:)1%
[ B2) g (s, v)dv . (1= B(2)). 71)
0 Substituting (70), (71) into (68) and (69), and

making use of (65), we obtain
$o(z,5,0) =b,(2,5,0)B(s + g+ 4(1 -=2))

. =0 (64) S 1= (s + N)pgyl(s), (72)
Define the following generating functions .
¢1(25550) = APO[)(S)

¢0(z,s,v)=2p0tj(s,v)z’, Az + [A(1-2)+ s]A(s + 1)
Jo:cl + (S+A)Z ¢0(:5550)’
$(z,5,2) = 2 py, (s, 2)2. (73)
7=0

from which we get

+ J:B(JF)P(;_ﬁl(S,v)a(v)dv,

Multiplying Eqs. (60)—(64) by 2/ and summing
over j, we obtain the following basic equations after
2(s+ AD[s+A - ABG +pu+ A1 = 2))Tpgls) + =(s + A)

Polzs s 0) = o o A - e DAG + DIBG + p + AL - =) — 2(s + )" (74)
By Rouché’s theorem!?>), the denominator has exact- Substituting (75) into (74) and then into (73), we
ly one zero w(s) inside the unit circle, and it is also obtain the expressions of $4( =z, s,0) and ¢,(=z, s,

the zero point for the numerator of the above equa- 0). This gives
tion. Simple algebra shows that

. 1 Aw(s) _
pools) = s+ A(:l * (s + 242 = Aw(s))A(s +/1)]'
(75)
oz, s,v)= $o(=,5,0)expl— (s + A)vl(l - A(w))
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Si

z{(s + A —AB(S +pu+ A1 —z)))[1+

Aw (s)
Gta-—awGNAG A)J_ (s + 1)

Az + (s +A(1— 2)A(s + A)IB(s + p+A(l—2))—2(s+A)

Xexpl— (s + A)vl(1 - A(v)), (76)
b1z, 5,2)= — Al cely))
L [Az + (s + A1 - 2)D)AG+ D) IB(s+ p+ A1~ 2)) — 2(s + A)
Xexpi—(s+pu+2—2Az)xl(1 - B(x)). (77)
nce
R (s) = poy(s) + limJ bo(z,s, v)do + limJ $.(z,s,r)dx, (78)
==1-Jg ==>1-Jy
upon substitution, we obtain the formula (53). Q.E.D.
From Theorem 6 we obtain
Corollary 3. The mean time to the first failure (MTTFF) of the server is given by
_1 1 _(OLQ—A(/\D[A(A)BULL+ 2(1 - B(p))]
MITER =7, (1- @)A1~ Bu)
L1 A(M[1—2B(u)+ﬂl)3(u)l' (79)

Proof. From (53) and the following equation

MTTFF = J:R(t)dz R () 1, o,
we obtain (79). Q.E.D.
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